Analytic error scaling vs. number of bins¶
examples/analytic_N_scaling.py plots the error in the solution as function of number of bins. We expect different behaviour depending on the number of stencil points used. (N**-2, N**-4 and N**-6 for 3, 5 and 7 stencil points respectively)
$ python analytic_N_scaling.py --help
usage: analytic_N_scaling.py [-h] [-p] [-s SAVEFIG] [--nNs NNS] [-N NS]
[-r RATES] [--nfit NFIT]
optional arguments:
-h, --help show this help message and exit
-p, --plot False
-s SAVEFIG, --savefig SAVEFIG
u'None'
--nNs NNS 7
-N NS, --Ns NS -
-r RATES, --rates RATES
u'0,0.1'
--nfit NFIT u'7,5,4'
Here is an example generated by:
$ python analytic_N_scaling.py --nNs 6 --plot --savefig analytic_N_scaling.png