Source code for equilibrium

#!/usr/bin/env python
# -*- coding: utf-8 -*-

"""
Equilibrium
-----------

:download:`examples/equilibrium.py` demonstrates how
scaling can be used together with tolerances to achieve
desired accuracy from the numerical integration.

We will consider the transient towards an equilibrium
for a dimerization:

.. math ::

    A + &B &\\overset{k_f}{\\underset{k_b}{\\rightleftharpoons}}  C

The analytic solution is (its derivation is left as an exercise):

.. math::

    A(t) &= A_0 - x(t) \\\\
    B(t) &= B_0 - x(t) \\\\
    C(t) &= C_0 + x(t) \\\\
    x(t) &= \\frac{(U-b)(U+b)(e^{Ut}-1)}{2k_f(Ue^{Ut} + U - qe^{Ut} +  q)} \\\\

where

.. math::

    U    &= \\sqrt{A^2k_f^2 + 2ABk_f^2 - 2Ak_bk_f + B^2k_f^2 -
                2Bk_bk_f + 4Ck_bk_f + k_b^2} \\\\
    q    &= Ak_f + Bk_f - k_b


::

 $ python equilibrium.py --help

.. exec::
   echo "::\\\\n\\\\n"
   python examples/examples/equilibrium.py --help | sed "s/^/   /"


Here is an example generated by:

::

 $ python equilibrium.py --plot --savefig equilibrium.png


.. image:: ../_generated/equilibrium.png


If concentrations are far from 1 (and below abstol) the accuracy of
the numerical solution will be very poor:

::

 $ python equilibrium.py --A0 1.0 --B0 1e-10 --C0 1e-30 --kf 10 --kb 1 --t0 0\
 --tend 5 --plot --plotlogy --plotlogt --savefig equilibrium_unscaled.png


.. image:: ../_generated/equilibrium_unscaled.png


But by scaling the concentrations so that the smallest is well above the
absolute tolerance we can get accurate results:

::

 $ python equilibrium.py --scaling 1e10 --A0 1.0 --B0 1e-10 --C0 1e-30 --kf 10\
 --kb 1 --t0 0 --tend 5 --plot --plotlogy --plotlogt --savefig\
 equilibrium_scaled.png


.. image:: ../_generated/equilibrium_scaled.png

"""

from __future__ import (absolute_import, division,
                        print_function, unicode_literals)
from future.builtins import *
import argh
import numpy as np

from chemreac import ReactionDiffusion
from chemreac.integrate import run
from chemreac.units import (
    SI_base, second, molar, unitof, to_unitless, get_derived_unit
)
from chemreac.util.plotting import (
    save_and_or_show_plot, plot_solver_linear_error,
    plot_solver_linear_excess_error
)


def _algebraic_sigmoid(x, power, limit):
    # Avoid overflow in exp()
    return x/((x/limit)**power+1)**(-1/power)


[docs]def analytic_x(t, A, B, C, kf, kb, _exp=np.exp): """ Analytic solution to the dimeriztion reaction: A + B <=> C; (K = kf/kb) """ q = -A*kf - B*kf - kb U = (A**2*kf**2 - 2*A*B*kf**2 + 2*A*kb*kf + B**2*kf**2 + 2*B*kb*kf + 4*C*kb*kf + kb**2)**0.5 expUt = _exp(U*t) return -(U - q)*(U + q)*(1 - 1/expUt)/(2*kf*(U + U/expUt - q + q/expUt))
def _get_Cref(t, y0, k, use_mpmath=True): """ convenience function for generating reference trajectory """ if use_mpmath: import mpmath as mp mp.mp.dps = 30 # number of significant figures y0 = [mp.mpf(_) for _ in y0] k = [mp.mpf(_) for _ in k] _exp = np.vectorize(mp.exp) else: def _exp(x): return np.exp(_algebraic_sigmoid(np.asarray(x), 8, 350)) A, B, C = y0 kf, kb = k x = analytic_x(t, A, B, C, kf, kb, _exp).reshape((t.size, 1)) dy = np.hstack((-x, -x, x)) res = y0 + dy if use_mpmath: res = np.array(res, dtype=np.float64) return res
[docs]def integrate_rd( tend=1.9, A0=4.2, B0=3.1, C0=1.4, nt=100, t0=0.0, kf=0.9, kb=0.23, atol='1e-7,1e-6,1e-5', rtol='1e-6', logy=False, logt=False, num_jac=False, plot=False, savefig='None', splitplots=False, plotlogy=False, plotsymlogy=False, plotlogt=False, scale_err=1.0, scaling=1.0, verbose=False): """ Runs the integration and (optionally) plots: - Individual concentrations as function of time - Reaction Quotient vs. time (with equilibrium constant as reference) - Numerical error commited (with tolerance span plotted) - Excess error committed (deviation outside tolerance span) Concentrations (A0, B0, C0) are taken to be in "M" (molar), kf in "M**-1 s**-1" and kb in "s**-1", t0 and tend in "s" """ rtol = float(rtol) atol = list(map(float, atol.split(','))) if len(atol) == 1: atol = atol[0] registry = SI_base.copy() registry['amount'] = 1.0/scaling*registry['amount'] registry['length'] = registry['length']/10 # decimetre kf = kf/molar/second kb = kb/second rd = ReactionDiffusion(3, [[0, 1], [2]], [[2], [0, 1]], [kf, kb], logy=logy, logt=logt, units=registry) y0 = np.array([A0, B0, C0])*molar if plotlogt: eps = 1e-16 tout = np.logspace(np.log10(t0+eps), np.log10(tend+eps), nt)*second else: tout = np.linspace(t0, tend, nt)*second integr = run(rd, y0, tout, atol=atol, rtol=rtol, with_jacobian=not num_jac) Cout, yout, info = integr.Cout, integr.yout, integr.info try: import mpmath assert mpmath # silence pyflakes except ImportError: use_mpmath = False else: use_mpmath = True time_unit = get_derived_unit(registry, 'time') conc_unit = get_derived_unit(registry, 'concentration') Cref = _get_Cref( to_unitless(tout - tout[0], time_unit), to_unitless(y0, conc_unit), [to_unitless(kf, 1/time_unit/conc_unit), to_unitless(kb, 1/time_unit)], use_mpmath ).reshape((nt, 1, 3))*conc_unit if verbose: print(info) if plot: npltcols = 3 if splitplots else 1 import matplotlib.pyplot as plt plt.figure(figsize=(18 if splitplots else 6, 10)) def subplot(row=0, idx=0, adapt_yscale=True, adapt_xscale=True, span_all_x=False): offset = idx if splitplots else 0 ax = plt.subplot(4, 1 if span_all_x else npltcols, 1 + row*npltcols + offset) if adapt_yscale: if plotlogy: ax.set_yscale('log') elif plotsymlogy: ax.set_yscale('symlog') if adapt_xscale and plotlogt: ax.set_xscale('log') return ax tout_unitless = to_unitless(tout, second) c = 'rgb' for i, l in enumerate('ABC'): # Plot solution trajectory for i:th species ax_sol = subplot(0, i) ax_sol.plot(tout_unitless, to_unitless(Cout[:, 0, i], molar), label=l, color=c[i]) if splitplots: # Plot relative error ax_relerr = subplot(1, 1) ax_relerr.plot( tout_unitless, Cout[:, 0, i]/Cref[:, 0, i] - 1.0, label=l, color=c[i]) ax_relerr.set_title("Relative error") ax_relerr.legend(loc='best', prop={'size': 11}) # Plot absolute error ax_abserr = subplot(1, 2) ax_abserr.plot(tout_unitless, Cout[:, 0, i]-Cref[:, 0, i], label=l, color=c[i]) ax_abserr.set_title("Absolute error") ax_abserr.legend(loc='best', prop={'size': 11}) # Plot absolute error linE = Cout[:, 0, i] - Cref[:, 0, i] try: atol_i = atol[i] except: atol_i = atol wtol_i = integr.with_units(atol_i + rtol*yout[:, 0, i], 'concentration') if np.any(np.abs(linE/wtol_i) > 1000): # Plot true curve in first plot when deviation is large enough # to be seen visually ax_sol.plot(tout_unitless, to_unitless(Cref[:, 0, i], molar), label='true '+l, color=c[i], ls='--') ax_err = subplot(2, i) plot_solver_linear_error(integr, Cref, ax_err, si=i, scale_err=1/wtol_i, color=c[i], label=l) ax_excess = subplot(3, i, adapt_yscale=False) plot_solver_linear_excess_error(integr, Cref, ax_excess, si=i, color=c[i], label=l) # Plot Reaction Quotient vs time ax_q = subplot(1, span_all_x=False, adapt_yscale=False, adapt_xscale=False) Qnum = Cout[:, 0, 2]/(Cout[:, 0, 0]*Cout[:, 0, 1]) Qref = Cref[:, 0, 2]/(Cref[:, 0, 0]*Cref[:, 0, 1]) ax_q.plot(tout_unitless, to_unitless(Qnum, molar**-1), label='Q', color=c[i]) if np.any(np.abs(Qnum/Qref-1) > 0.01): # If more than 1% error in Q, plot the reference curve too ax_q.plot(tout_unitless, to_unitless(Qref, molar**-1), '--', label='Qref', color=c[i]) # Plot the ax_q.plot((tout_unitless[0], tout_unitless[-1]), [to_unitless(kf/kb, molar**-1)]*2, '--k', label='K') ax_q.set_xlabel('t') ax_q.set_ylabel('[C]/([A][B]) / M**-1') ax_q.set_title("Transient towards equilibrium") ax_q.legend(loc='best', prop={'size': 11}) for i in range(npltcols): subplot(0, i, adapt_yscale=False) plt.title('Concentration vs. time') plt.legend(loc='best', prop={'size': 11}) plt.xlabel('t') plt.ylabel('[X]') subplot(2, i, adapt_yscale=False) plt.title('Absolute error in [{}](t) / wtol'.format('ABC'[i])) plt.legend(loc='best') plt.xlabel('t') ttl = '|E_i[{0}]|/(atol_i + rtol*(y0_i+yf_i)/2' plt.ylabel(ttl.format('ABC'[i])) plt.tight_layout() subplot(3, i, adapt_yscale=False) ttl = 'Excess error in [{}](t) / solver linear error span' plt.title(ttl.format( 'ABC'[i])) plt.legend(loc='best') plt.xlabel('t') plt.ylabel('|E_excess[{0}]| / e_span'.format('ABC'[i])) plt.tight_layout() save_and_or_show_plot(savefig=savefig) return yout, to_unitless(Cref, conc_unit), rd, info
if __name__ == '__main__': argh.dispatch_command(integrate_rd, output_file=None)